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Abstract. A method for improving the effectiveness of one-phase periodic solutions of 
integrable equations is suggested, which is based on the explicit determination of the locus 
of the auxiliary spectrum point.  The method is applied to the nonlinear Schrodinger 
equation a n d  the derivative nonlinear Schrodinger equation. I t  is shown that the relations 
between polynomial P ( A  ), defining the solution in the incerse transform method,  and  its 
algebraic resolvents play an  important role in the theory.  

1. Introduction 

The nonlinear Schrodinger ( h u )  equation 

i u , + u , , + 2 1 ~ 1 ~ u  = O  

and derivative nonlinear Schrodinger ( DKLS)  equation 

i u , + ~ , , * 2 i ( / u ) ~ u ) ,  = O  

are very important both in the mathematical theory of integrable equations and  in 
various physical applications (Newell 1985). Discovery of the integrability of the NLS 

equation by the inverse scattering transform (IST) method and finding its soliton 
solutions (Zakharov and  Shabat 1971) promoted to a large extent the understanding 
of the generality of this method and its subsequent fast development. Integrability of 
the DNSL equation was established by Kaup and Newell (1978) with derivation of the 
corresponding soliton solutions. 

For physical applications it is necessary to know not only soliton solutions, but 
also the periodic solutions of these equations. The general principles of obtaining the 
periodic solutions of integrable equations were first developed for the K d v  equation 
(Novikov 1974, Dubrovin 1975, Its and Matveev 1975, McKean and  van Moerbeke 
1975). Then this method was used by Its and Kotlyarov (1976) for the NLS equation. 
But the formulae obtained have proved to be less effective than for the K d v  equation 
even in the simplest case of one-phase periodic solutions. The reasons for this 
phenomenon can be summarised as follows. 

As is well known (Newell 1985), in the IST method the solutions of the integrable 
equation are determined by the spectrum of the corresponding linear operator L. For 
example, in the case of the K d v  equation the L operator coincides with the quantum 
mechanical Schrodinger operator, the spectrum of which in the periodic case consists 
of some number of stability bands separated by lacunae. The corresponding Bloch 
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function considered as a function of spectral parameter A is single-valued on the 
two-sheet Riemann surface, obtained by joining together two complex planes of spectral 
parameter A with cuts along the lacunae. The spectrum does not depend on time, and 
evolution of the solutions is determined by the movement of the points of the auxiliary 
spectrum, where the Bloch function has zeros, along this Riemann surface. It is easy 
to show in the Kdv case that each point of the auxiliary spectrum lies inside ‘its’ lacuna, 
so they can move along cycles around lacunae only. The same picture holds for all 
integrable equations with self-adjoint corresponding operator L, e.g. for the N L S  

equation with a minus sign before the last term in (1.1). However, for the NLS equation 
( l . l ) ,  and the DNLS equation (1.2) and for other physically important equations the 
operator L is not self-adjoint, hence the spectrum may be complex and the term ‘lacuna’ 
no longer has a clear meaning. Therefore the loci of the auxiliary spectrum points are 
not prescribed beforehand, and their determination is not a simple problem (Ma  and 
Ablowitz 1981, Previato 1985). In this paper we shall solve this problem in the case 
of NLS and D N L S  one-phase periodic solutions. This complements the method of Its 
and Kotlyarov (1976) and will permit one to obtain the solutions under consideration 
in a form convenient for applications. 

2. The NLS equation 

2.1. Periodic solutions 

The comprehensive exposition of the IST method for the N L S  equation was given by 
Tracy and Chen (1988). We will give here some of the main relations relevant to the 
one-phase case, in which the NLS periodic solution is determined by the elliptic Riemann 
surface 

4 

1 2 =  P ( A )  P ( A ) =  ( A  - A , ) = A 4 - ~ 1 A 3 + ~ 2 A 2 - ~ 3 A + ~ 4  (2.1) 
, = I  

where s, are the usual symmetrical functions of the zeros A ,  of polynomial P ( A ) .  As 
is known, these zeros consist of two complex conjugate pairs. There is only one point 
of the auxiliary spectrum p ( x ,  t )  whose movement along its locus is determined by 
the equations 

where signs rt correspond to the two sheets of the Riemann surface. It is evident that 
p depends only on the phase 

(2.3) 
If p ( x ,  t )  is already known, then the solution u ( x ,  t )  of the N L S  equation can be 
obtained from the equations 

w = x + SI t + w, . 

a h  U -- din U 
- 2i(s2 - a s : )  +2is ,p .  -- - 2 i ( p  -is,) 

ax a t  
(2.4) 

As has been emphasised by Its and Kotlyarov (1976) (see also Tracy er a1 1984), the 
initial conditions for the solutions of equations (2.2) and (2.4) must satisfy the constraint 

P ( A ) = ~ ’ ( A ) + ~ u ~ ’ ( A  - p ) ( ~  - p * )  (2.5) 
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where /U/* = / u ( x ,  ? ) I 2 ,  f ( A )  = A 2 - f , A  + f 2 .  The usual method of approach (Its and  
Kotlyarov 1976, Tracy and  Chen 1988) involves an  integration of equations (2.2) and  
(2.4) with the initial conditions satisfying the constraint (2.5). We shall show that for 
one-phase solutions equation (2.5) can be resolved explicitly, which leads to more 
effective expressions. 

The coefficients of polynomial f ( A )  and  the values of p, p* are, obviously, the 
functions of v = 1 ~ 1 ‘ .  During the evolution of u ( x ,  t )  according to the NLS equation, 
the magnitude of I u ( x ,  t)l’ varies, so let us choose to take the initial value with the 
corresponding values of p, p* .  Hence (2.5) gives us, in fact, the locus of p, p*, and 
v = ( u ( x ,  t ) ( ’  is the natural coordinate along this locus. The trajectory of p must be 
closed and  v must oscillate between two positive values. Both the locus (i.e. trajectory 
of p )  and the period of oscillations of v are determined by the distribution of the 
zeros of the polynomial P ( A ) ,  and in the one-phase case they can be easily found as 
follows. 

Comparing the coefficients of the A h  on both sides of (2.5), we obtain the equations 

These equations give 

(2.7) 

(2.8) 

f - I  I - 2s 

p + p *  = fS - ( q / u )  

where 

fi = - &s + f ( p - v )  

pp* = - ( 1 / 4 ~ ) [ ~ ’  - 2 v ( p  + i s 2 )  + sq + p ’  -4r ]  

Thus we see that ,U and p* are the solutions of the quadratic equation whose coefficients 
are given by the expressions (2.8). It is remarkable that its discriminant is equal to 
R (  u ) /  v2, where 

(2.10) R ( v )  = v 3  - 2 p v 2 +  ( p 2 - 4 r ) v +  q’ 

is the cubic resolvent of the polynomial P ( A )  (van der Waerden 1971). Thus 

q + m  
p,  p* = $s - 

2u 

and  we have proved the identity 

A - S I  A + S’A ’ - S; A + s4 

= [ ( A  - 4s)’ + ;( p - v)]’ + v A --+ 
2v 4 2u 

(2.11) 

As is known (van der Waerden 19711, the zeros v,, v7, v3 of the cubic resolvent R (  v )  
are related to the zeros A , ,  i = 1 , 2 , 3 , 4 ,  of the polynomial P ( A )  by the formulae 

V ,  = - $ ( A ,  - h 2 +  h 3  - V ~ = - ; ( A , - A , - A , + A ~ ) ’  
(2.12) 

v3 = - a( A ,  + A - A - A $ .  
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In the case of the periodic solutions of the NLS equations when A I ,  . . . , A 4  consist of 
the two complex conjugate pairs 

A , = a + i y  A 2  = P + i 6  A 3 = a - i y  A 4 = P - i 6  (2.13) 

the formulae (2.12) yield 

V I  = - ( a  - p ) 2  v., = ( y  - vj = ( y + (2.14) 

This means that v oscillates in the interval v 2 d  v d v 3 ,  where the resolvent R ( v )  is 
negative, and  for the trajectory of p (its locus) we have 

s q + i m  
p = i -  2 v  (2.15) 

and p* is the complex conjugate of this expression. If we wish to separate the real 
and  imaginary parts of p ( p  = p '+ ip" ) ,  then it is easy to find that p'  and p" are 
related by the cubic curve equation. The graph of this curve is shown in figure 1 .  Its 
branch in the form of a closed oval corresponds to the periodic solution. This oval 
lies on two sheets of the Riemann surface (2.1) going from one sheet to another through 
the cuts which connects A I  with A 2  and A, with A 4 ,  respectively. 

After finding the locus of p(x ,  I), we may proceed to the solution of equation (2.2).  
During the movement of p ( x ,  t )  along curve (2.15) the last term in the identity (2.11) 
vanishes, so that (2.2) and (2.3) provide 

t I 
2 

1 

p" 0 

-1 

- 2  

(2.16) 

Figure 1. A plot of the curve ( 2 . 1 5 )  in the complex p plane for A , =  l + i ,  A 2 = 2 + 2 i .  
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Since the variables p and v are related by (2.151, we shall first search for v instead 
of p. Differentiation of P(p)  = f ' ( p )  with respect to v gives 

d P  d p  
d p  dv 

From this we find the derivative 

dv  2v 2v 

Multiplying (2.16) by (2.17), we obtain the equation for v :  

dv -- d(2 w) - J--R?;;T 

(2.17) 

(2.18) 

Since R (  v )  is the cubic polynomial, the solution of (2.18) can be expressed through 
the Weierstrass P function. To this end let us express a resolvent in Weierstrass form 

R ( v )  = - l6(4€'-g2€-g3)  = -16x4([-  e l ) ( ( -  e l ) ( ( -  e 3 )  (2.19) 

where 

t = t p  -tv v = f p - 4 5  (2.20) 

e ,  =A(++ v3-2vI )  e , = & ( u , + v , - 2 v 2 )  e , = & ( v l +  v,-2v3) (2.21) 

and the invariants 

g,= r + & p 2  -g, = ip[  r - ( i p ) ' ]  - & q Z  

coincide with those of the polynomial P ( A ) .  Substituting (2.19) and (2.20) into (2.18), 
we find 

which gives 

€ = P ( 2  w +  c )  v = ; p - 4P( 2 w + c). (2.22) 

An integration constant c is determined by the initial conditions, which we shall choose 
as follows: v = v3 at W = 0, i.e. P( c )  = e,, and hence c = w'  ( w  and w'  are half-periods 
of the P function). Another choice of initial conditions corresponds to adding a 
constant term to the phase (2.3).  In the one-phase case a constant additive in phase 
has no physical sense, and we shall take WO = 0 for simplification of the formulae. 
Thus, the p trajectory is now expressed through the phase W which depends linearly 
on time t and coordinate x:  

i 1 dv _ -  - - s q  1 
p ( x ,  t )  =-+- 

4 8 5 3 ( 2 W + w ' ) - ; p  2 Y d ( 2 W ) '  

Now we shall turn to calculation of u ( x ,  t ) .  From (2.4) we have 

u ( x ,  t )  = exp[2i(s2-$s:)t]ij( W) 

provided 

(2.23) 

(2.24) 

du* 
d W  
-- - 2i(p - f s , ) i j .  
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Substitution of ( 2 . 2 3 )  into the last equation leads to 

d l o g l i  1 d l o g  v is iq 1 
d ( 2 W ) - 2  d ( 2 W )  2 + 8 @ ( 2 W + w ’ ) - b p ’  

( 2 . 2 5 )  

This equation can be easily integrated by means of the formula (Gradshtein and Ryzhik 
1980)  

dz a ( z - x )  
a ( z + x )  

( 2 . 2 6 )  

where ( and  U are the Weierstrass functions. Choosing x according to 

@ ( x )  = ; p  ( 2 . 2 7 )  

we find @ ’ ( x )  from the differential equation for @ ( x ) :  

@ ’ ( x )  = -ais. ( 2 . 2 8 )  

After a simple calculation with the use of identity (Erdelyi et a1 1955)  

a ( 2  W + w ’ + x ) a ( 2 W + w ’ - x )  
( T 2 ( 2 W + w ’ ) a 2 ( x )  

* ( 2 W + w ‘ ) - @ ( x ) = -  

we obtain the periodic solution for the N L S  equation in the form 

a ( 2 W + x + w ’ )  
a ( 2 W + w ’ ) a ( x )  

X 

( 2 . 2 9 )  

( 2 . 3 0 )  

where 7 = ( ( U ) ,  v ‘ =  ( ( w ’ ) .  Let us introduce a parameter x such that 

x = w + x .  ( 2 . 3 1 )  

Then a simple calculation gives 

i ( x ) = 5 ( X ) + 7 7 - f ( v r v , l Y l ) I ’ 2 .  

From the (T function in ( 2 . 3 0 )  we pass to the 6 functions by means of the relation 

which gives 

U ( X ,  t )  = ( y + s )  exp -i(a + p ) x - 2 i ( a ’ + p 2 -  y Z - 6 ’ ) t  

( 2 . 3 2 )  

w = x + 2 ( a  + p) r  
where it is supposed without loss of generality that y 3  6. From ( 2 . 2 7 )  and ( 2 . 3 1 )  we 
find 

so that 

s n ( G  x, k )  = ( U,/ vJ”‘ ( 2 . 3 3 )  
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where 

k 2  - e2 - e3 U 3  - U 2  4YS - - 
e ,  - e3 u3 - u1 ( y + s 1’ + ( a - P l 2  

Expression (2.33) gives 

where k”  = 1 - k’ and the angle cp has a very simple geometrical sense 

sin cp = I Q  -PI 
[ ( a  - P ) ’ +  ( y  - S)’]’12 

(2.34) 

(2.35) 

(2.36) 

It is easy to obtain the simple expression for the variation of the absolute value of the 
field u ( x ,  t )  from the second formula (2.22): 

lu(x, t ) l ’ =  V , + ( V , - V , )  s n 2 ( G  W, k )  

= (y+6) ’ -4yS  snz{[(y+S)2+(a-p)’]”2W, k}. (2.37) 

The formulae (2.32)-(2.37) express the general periodic solution of the XLS equation 
(2.1) in a form which is relatively simple and suitable for use. 

2.2. Limiting cases 

Let us discuss some important limiting cases of the general solution. 
Let /3 + a, i.e. all zeros lie on the one vertical line. In this case (2.35) gives 

so that 

and the term in large parentheses in (2.32) vanishes. The ratio of the 6 functions is 
equal in this limit to the Jacobi dn function, hence we obtain 

u(x, t )  = ( y  + 8 )  exp[-2iax -2i(2a2 - y z -  S ’ ) t ]  dn (2.38) 

where W = x + 4at. It is convenient to go to another modulus of the elliptic functions 
by means of the identity 

( l + k ) d n  = d n ( 2 z , k ) + k c n ( 2 z , k ) .  

Then (2.38) takes the form 

u(x, t )=exp[-2iax-2i(2a‘-y’-S2)t][ydn(2yW, S / y ) + 6  cn(2yW, S/y)] .  (2.39) 

At S + y ,  when two pairs of zeros A ,  coalesce into one pair, we obtain the well known 
soliton solution 

u(x, t )  = 2y exp[-2iax -4i(a’- y‘)t] sech[2y(x+4at)] .  (2.40) 
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Now let us discuss another degenerate case where Q # P but 6 + y, i.e. the zeros 
A ,  lie on two horizontal lines. According to (2.36), we have sin cp = 1, so that (2.35) 
gives ,y = U ’ ,  l(x) = 7’ and simple calculations lead to 

u ( x ,  t )  = 2y  exp[-i(cu + ~ ) ~ - 2 i ( a ’ + p ’ - 2 y ’ ) t ]  

[4y’+ ( a  - p ) y  [ 4 y 2 + ( c u - ~ ) * ] ’  ‘w, (2.41) 

where W = x + 2(a  + P ) t .  In  the limit P + a this periodic solution goes to the same 
soliton solution (2.40). 

As another example, let us discuss the case of small wave modulations with 6 << y. 
Now we have a small parameter 

(2.42) 

and (2.32) should be expanded with respect to its degrees. From (2.35) we obtain (for 
k‘+ 1) 

1 1 +sin cpo 

~ ~ 2 + ( ~  - p ) * l o g  1 -sin cpo X 2  (2.43) 

where sin cpo is determined by (2.36) with 6 = O .  At k+O we have 

~ ( x )  = f e , x +  cot[(;e,)”‘x] e ,  = [ y 2 + ( a - ~ ) 2 ] ” 2  (2.44) 

and 7 / w  can be calculated by means of the formula 

e1 - ( e ,  - e 3 )  -- E ( k )  
w K ( k )  
rl _ -  

which at k +  0 gives 7 / w  = f e , .  Substitution of (2.43) into (2.44) gives for the brackets 
in (2.32) the expression 

t)x i y2 - s ’  i i ( x ) - ; + -  -2 -- 2 I Q  -PI. 
2 I Q  -PI 

We must substitute (2.43) and 

K ( k )  7T w=-2 
J y Z + ( a - p ) ?  

into the arguments of the 6 functions and expand them in powers of k‘. After simple 
calculations we find 

u(x, t )  = exp[-i(a + P)X - 2i( a ‘ + ~ ’ -  y’)t +ila - P I  W] 

c o s ( 2 J y 2 + ( Q - p ) ’ w ) -  ila -PI 
J Y 2 + ( Q  - P ) 2  

(2.45) 

where W = x + 2( Q + P )  t .  This expression gives the solution of the NLS equation with 
small modulation and coincides with the results of perturbation theory. 
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We see that the general expression (2.32) contains all known results as particular 
limiting cases, and relates them to the distribution of spectral data A , ,  i = 1, .  . . , 4 ,  on 
the complex plane. 

The calculations of this section use the relation between polynomial P ( A )  and its 
resolvent R ( v ) .  It is natural to ask how this method should be modified for other 
integrable equations. We shall answer this question for the case of the DNLS equation 
in the next section. 

3. DNLS equation 

We shall discuss the DNLS equation (1.2) with a minus sign before the last term 

iu,  + U,, - 2 i ( I ~ [ ~ u ) ~  = 0. (3.1) 

This sign can be easily inverted by means of simple substitutions. 

3.1. The general equations of I S T  

Integrability of (3.1) is based on the possibility of representing this equation as a 
compatibility condition of two systems of linear equations containing an arbitrary 
spectral parameter A. We shall take these systems in the form (Wadati et al  1979) 

-- a*‘ - 2Au*(x, [ ) $ I  +2A’$? 
ax (3.2) 

and 

%= -[8iA4+4iluj’A2]$I + [8A3u + (2iu, +4/u12u)h]& 
a t  

(3.3) 
?!!2 = [ 8A3 U * + (-2i U: + 41 U 1’ U * ) A  ]GI + [ 8iA4 + 4i/ U I2A2] +>. 
a t  

These linear systems have two basic solutions i,b = ( G I ,  ( L 2 )  and cp = ( ‘p i ,  cpz), which 
satisfy the different boundary conditions. Now, it is convenient to pass to linear systems 
for ‘squared basic functions’ 

f = - ’  d ( F I * Z +  c p Z * i )  g = PI*l h = -(p?$z. (3.4) 
These systems have the form 

a h  
ax ax ax 
_-  a f  - -2iAu*g +2iAuh ag = 4iAuf -4iA’g -= -4iAu*f +4iA2h 

-- ” - -i[8A3u* + (-2iu: +4/u(’u*)A]gSi[8A3u + (2iu, +4/u12u)A]h 
a t  

%= 2i[8A3u+ ( 2 i u , + 4 ~ u ~ 2 u ) A ] f - 8 i ( 2 A 4 + ~ u ( 2 A 2 ) g  
a t  

= -2i[ 8A3u* + (-2iuz + 4j U I’u*)A]f+ 8i(2A4 + I u/*A2) h. 
a t  

It is easy to check that the expression 

f ’ - g h = P  

(3.5) 

(3.7) 
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does not depend on x and t ,  so that P is a function of A only. Periodic solutions are 
distinguished by the condition that P = P( A ) be a polynomial in A. Seeking the solutions 
of systems (3 .5)  and (3 .6)  in the form of polynomials in  A ,  it is easy to find that P ( A )  
can contain only the even degrees of A. Non-trivial solutions exist if the degree of 
P ( A )  is equal to or is more than 6.  The degrees 6 and 8 correspond to the one-phase 
periodic solutions in which we are interested. I t  will be clear from the following that 
solutions corresponding to the sixth degree of P ( A )  are particular cases of solutions 
corresponding to the eighth degree of P ( A ) .  Therefore we assume that P ( A )  has the 
form 

where *A,  are the zeros of the polynomial. Then (3.5) and (3.6) lead to the expressions 

f = A 4 - f i A 2 + f i  g = UA (A '  - p )  h = u*A(A'- p * )  (3 .9)  

and 

(3.10) 

where the quantities f l ,  f 2 ,  Iu12, p, p* are connected by the following constraint, which 
is a result of (3 .7):  

(3.1 1) 

The variable p is called the auxiliary spectrum point of the eigenvalue problem (3 .5)  
with periodic boundary conditions. The dependence of p on x and t can be obtained 
from (3 .5)  and (3.6) if one puts A 2 =  p and takes into account that f (p"')  =-: 

( A 4  - f I A 2  +fi)' - lul'A'(A'- /*)(A'  - p * )  = P ( A ) .  

*=*4i- ax * = * 8 i ( 2 f I + [ u l 2 ) m .  a t  (3.12) 

We see that p moves over an elliptic Riemann surface ( 5  A )  defined by the equation 
1' = P( 

3.2. Periodic solutions of the D N L S  equation 

As in the case of the NLS equation, we see that the constraint (3.11) can be considered 
as an equation for the locus of p in the complex A plane, and the variable v = lul' is 
the natural coordinate along this locus. Comparing the coefficients of A h  on both sides 
of (3.11), we have 

SI = 2fl+ v 

ss = 2fIf2-c v w *  

s 2 =  f f + 2 f 2 + v ( p + p * )  

s4= f:. 
One can obtain from these equations the expression for p 

1 
8 v  

p = - [4s2* 8 6 -  ( v  - s,)'+i-] 

where R( v )  is a fourth-degree polynomial in v: 

R (  V )  = ~ ~ - 4 . ~ 1  v3+(6sf -8sz*48&)v2 

- (4s: - 1 6 ~ l ~ 2 + 6 4 ~ ,  * 3 2 ~ 1 6 )  v + (-s; + 4 ~ ,  * 8 6 ) ' .  

(3.13) 

(3.14) 

(3 .15)  
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The root d& in these formulae is considered to be &= AlA2A3A4. We shall call the 
polynomials R( U )  the ‘resolvents’ of polynomial P ( A ) ,  since their zeros are related to 
the zeros of P ( A )  by simple symmetric formulae: the zeros 

U ,  = ( A ,  + A ~ +  h 3  - AJ’ 

v3 = ( A  , - A, + h 3  + 
v 2  = ( A ,  + A >  - A ~ +  h412 

v 4 =  ( - A ,  + A : + A ~ + A J ’  
(3.16) 

correspond to the upper signs in (3.15), and the zeros 

U ,  = ( A ,  + A ? +  h 3 +  h4)> 

V , = ( A , - A ~ + A , - A ~ ) ~  v 4 =  ( - A , + A ~ + A ~ -  AJ’ 

v 2  = ( A ,  + h 2 -  A ~ - A ~ ) ~  
(3.17) 

correspond to the lower signs. This can be proved by a simple check of the Viete 
formulae. The passage mentioned above to the sixth-degree polynomial P(A) can be 
accomplished by removing one of the zeros A , .  

As follows from (3.12) and first formula (3.13), the variable p depends only on 
the phase 

Differentiation of P ( p ” ’ 2 )  =f ’ (p ” ’ )  with respect to v gives 

which leads to the expression for the derivative 

Multiplying (3.18) by (3.19), we find the equation for U :  

dv 
d W  
-=W. 

(3.19) 

(3.20) 

This equation can be easily resolved by means of elliptic functions. If v is known, 
then u ( x ,  t )  can be obtained from (3.10). With the help of (3.13) we get 

au au 
at ax 
- = 16id& U + 2s, - 

so that 

u ( x ,  t )  = exp( 1 6 i G  t )u*(  W) 

where U*(  W) should satisfy the equation 

du* 
d W  
-- - 4i( - is, + i v + p 6. 

Substitution of (3.14) and (3.20) results in the equation 

(3.21) 

(3.22) 
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where the identity, following from (3.15), 

(4s2 * 8s:” - s: )~  = v1 ~ 2 ~ 3 ~ 4  

was also taken into account. 
It is clear that the zeros A,  should be numbers such that v scillates between two 

positive values. The polynomial R (  v )  has four zeros vl, which are given by (3.16) or 
(3.17) depending on the choice of sign in (3.15). If only two v, are real and positive, 
then let us enumerate A,  so that these v, are v I ,  v2 and v 1  3 v2. I f  all the v, are real 
and positive, then let us enumerate A ,  so that v 1  2 v2 2 v3 2 v4. Thus, as is clear from 
(3.20), the variable v can oscillate in the intervals v l  2 v 2 v2 or v3 2 v 2 v4, where 
R( v) c 0. 

Let us list the A i ,  i = 1,2,3,4,  corresponding to the periodic solutions. 
(i)  The zeros A ,  consist of two complex conjugate pairs: 

A1=a+ip A 2 = a - $  A 3 =  y-i6 A q =  y+i6.  (3.23) 

Then (3.17) yields 

v1 = 4 ( a +  y ) 2  V2=4(a -7)’ 

v3 = -4( p - y ) 2  v4 = -4(p + y)2 
(3.24) 

and (3.16) results in the complex values of vi.  
(ii) If 

A I  = a  + i p  A2=cr-ip A 3 =  y- i6  A4=-y-i6 (3.25) 

then (3.16) yields (3.24), and (3.17) becomes inapplicable. Both these cases correspond 
to the same solution, for which the variable v oscillates in the interval v 1  3 v 2 v2. 

(iii) All four A i  are real and 

A I  3 A 2 3  A 3 3  A q .  

Both (3.16) and (3.17) yield the real and positive vi corresponding to different periodic 
solutions for which the variable v oscillates in the intervals v l  2 v 2 v2 or v3 2 v 2 v4.  

Al=a+$  A 2  = a -ip A 3 = Y  A 4 = 6  (3.26) 

(iv) If two A i  are complex conjugate and two others are real 

then (3.16) yields 

v, = (2a + y - 

v3 = ( y +  6 +2ip)’ 

v 2 = ( 2 a -  y + s y  

v4 = ( y + 6 - 2ip)’ 
(3.27) 

and (3.17) leads to the same values of vi with different signs before 6. 
Now we shall turn to finding the periodic solutions. Let us discuss at first the case 

when the variable v oscillates in the interval v l  2 v 2 v2 and v3 ,  v4 are also real. We 
shall choose initial conditions so that v = vI at W = 0. Then (3.20) leads to the solution 
(Gradshtein and Ryzhik 1980) 

where the elliptic function modulus is given by 

(3.28) 

(3.29) 
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The following calculations take a more convenient form in terms of the Weierstrass 
elliptic functions. Therefore we introduce the zeros of the Weierstrass cubic by means 
of the expressions 

Then, taking into account the formula 

W e ,  - e3 
sn2(\l(vl-  v3) (v , -  v4) --, 2 k 

we get from (3.28) the expression for v: 

@ ( W ) - @ ( p )  v = VI 
@( W)-@(K) ’ 

(3.30) 

(3.31) 

The parameters x and p are defined by the equations 

@ ( x ) = e 3 - ~ ( v , - v Z ) ( v 1 - v 3 )  = e3 - a (  v4/ )( - v2)( - v 3 )  (3.32) 

and the corresponding values of the derivatives are given by 

(3.33) 

Now, after substitution of (3.31) into (3.22), one can integrate the equation by means 
of (2.26). After simple calculations, we get the expression for the periodic solution of 
the DNLS equation: 

(3.34) 

The case when v oscillates in the interval v3 5 v 3 v4 can be considered in the same 
way. Initial conditions are chosen so that v = v4 at W = 0. For U we get the expression 

(3.35) 

where x and p are now defined by 

@3(X)=e3-ac.z-v4)(v3--Vq) 

The corresponding periodic solution of the D N L S  equation takes the form 

= e 3  - $( .I/ v4)( v 2  - v4)( v3 - v4). (3.36) 

(+( X)(+( w + p ) a (  w - x) 
a ( p ) a 2 (  w + x) v 3 3  v 3  Yd. (3.37) 
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The solutions (3.34) and (3.37) correspond to the A ,  listed above as ( i ) - ( i i i ) .  Case 
(iv) cannot be described by (3.34), since the modulus (3.29) is complex in this case. 
We shall obtain here only the expression for U. For the case of the resolvent’s zeros 
(3.27), equation (3.20) takes the form 

du  
d W  

(3.38) -- - { ( v I - u ) ( v - v 2 ) [ ( v - m ) ’ + n ‘ ] } ’ ”  

where 
7 ,  m = ( y - 6 ) - + n -  n = 2 P ( y - 6 ) .  (3.39) 

The result of integrating (3.38) can be expressed through the Jacobi elliptic functions 
as follows (Gradshtein and Ryzhik 1980): 

(3.40) 

where 

pf ,?  = ( m  - v ~ , ~ ) ’ +  n’ 

l 2 = [ ( y 1  - v,)’-(P, -P2)’1/(4P,p2). 

8 = ( P I  p p  w 
w = x+2(2a’-2@’+ y2+ 6 2 ) r  (3.41) 

Now let us discuss some limiting cases for these periodic solutions. 

3.3. Limiting cases 

We shall first consider the soliton limit of (3.34) when 

e ,  = e: = a =A( v 1  - va)( U? - v4) (3.42) 

By means of well known limiting expressions for the Weierstrass functions (Erdelyi 
et a/ 1955), we obtain from (3.34) 

u(x, r ) =  - e x p { i [ - s , + ~ v , + ~ v 2 ( v 4 / v l ) 1 ’ 2 ]  w 

= U,, i.e., k = 1 and 

e3 = -20 = -i( 6 - v2)( - v4)* 

+[3& coth(& x) -& coth(& p ) ]  W +  1 6 i G  r )  
fi sinh[&( W + p ) ]  sinh[&( W - x)] 

sinh(& p )  sinh’[&( W + x)] X 

Equations (3.32) give in this limit 
r & coth(v 3a x) = - f i (  v I  - v 2 )  

v‘Z coth(& p )  = - f (  v4/ vl)li2( u I  - v2). 

Let us denote 

(3.43) 

(3.44) 

(3.45) 
, r u2 - u4 2 6 = 6 W  cos- - = - 

2 VI - v4 
so that 

sinh(& x) = i cos(r /2)  cosh(& X )  = sin(r/2) 

sinh(& p )  = i f i  cos($)( v I  cos’($) + v4 sin‘($))-”’ 
cosh(& p )  = J;-d sin($)( u I  cos2($) + u4 sin2(&))-”>. 

(3.46) 
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Simple transformations of (3.43) with the use of (3.44)-(3.46) result in the soliton-like 
solution 

u ( x ,  r )= fexp[ i ( - s ,+~v , )  W+16i& 1-i- W] 

cosh(24+iI'/2)) 
cosh(26 - i r /2 )  

This solution describes a soliton propagating on the constant background. 
Let us discuss two particular cases of this solution. Consider the case 

(&+ &+ (fi - &) 
cosh(26 + ir/2) 
cosh(26 - i r /2 )  

X 

A ,  = A 4 =  a + i p  A I  = A 3  = a -ip 
so that 

v I  = 16a2 U* = vs = 0 v4= -16p' cos2(tr)  = p 2 / (  * + p 2  ). 
The last formula prompts the parametrisation 

a = A sin(&) p = A  cos(fr) .  

Substitution of these expressions into (3.47) leads to the soliton 

u ( x ,  t )  = 4A sin r 

<P = 2A2( cos T ) x  - 8A4( cos 2 r )  t 

exp( 2i@) exp(46) + exp( -iT) 
exp(26)+exp(-26+iT) exp(46)+exp(ir)  

6 = 2A2(sin T ) x  -8A4(sin 2 r ) t  

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

which differs from the soliton of Kaup and Newell (1978) only through a different 
notation. 

Let now all the A,  be real and equal to 

A ,  = ; ( a  + p )  A ~ =  h3 = f p  A ~ = - $ ( ( Y - @ )  (3.52) 

so that 

V I  = 4/32 v2 = v3 = a= U4 = 0 cos2(&) = (a2/4p2)  

and substitution into (3.47) gives 

cosh(2.9) cosh(26+iI'/2) 
cosh'(26 - i r /2 )  

u ( x ,  t )  = a e'@ 

where 

@ = (a * + p 2 ) x  + [ ( a 2  + p')' - 4p4] t 

-9 = i a (4p '  - a 2 ) I / * [ x +  (.2+2P2)t]. 

(3.53) 

(3.54) 

This is the 'bright' soliton on the background, as one can see from the expression for 
squared modulus of field: 

U =  lu (x ,  t ) / 2 = 4 a 2 p 2 [ a ' + ( 4 p 2 - a 2 )  tanh226]-'. ( 3 . 5 5 )  

In the same way, one can consider the soliton limit of periodic solution (3.37). 
The final result for the case (3.52) has the form 

sinh(26) cosh(2.9 - i r /2 )  
cosh2(26+iT/2) 

u ( x ,  t )  = ia e'* (3.56) 
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where s i n 2 ( r / 2 ) = a 2 / ( 4 p 2 )  and a, 6 are given by (3.54). The squared modulus of 
the field is given by 

Y =  I u ( x ,  t ) 1 2 = 4 ~ Z p Z [ ~ 2 + ( 4 p ' - ~ ' )  coth22-9]-'. (3.57) 

This is the 'dark' soliton on the constant background. 

4. Conclusion 

We see that the suggested integration method with the use of the resolvents of the 
polynomial P ( A )  is rather effective and can be applied to the different integrable 
equations. One can suppose that there exists a generalisation of the method which 
will permit one to obtain the effective formulae for multi-phase (particularly, two-phase) 
solutions of integrable equations. 

Acknowledgments 

I am indebted to V R Chechetkin, A L Chernyakov, V G Nosov, V F Tuganov and 
A A Vedenov for useful discussions. 

References 

Dubrovin B A 1975 Funk. Analiz. 9 41 
Erdelyi A, Magnus W, Oberhett inger F and  Tricomi G F 1955 Higher Transcendental Functions (Bateman 

Gradshtein I S a n d  Ryzhik I M 1980 Tables of Inregrals, Series, and Products ( N e w  York: Academic) 
Its A R and  Kotlyarov V P 1976 Dokl. Akad.  Nauk VkrSSR A 11 965 
Its A R and  Matveev V B 1975 Teor. Math. Fi:. 23 51 
K a u p  D J a n d  Newell A C 1978 J. Math. Phys. 19 118 
M a  Y C a n d  Ablowitz M J 1981 Stud. Appl. Math. 65 113 
McKean H P and  van Moerbeke P 1975 Inrent. Math. 30 217 
Newell A C 1985 Solitons in Mathematics and Physics i Philadelphia, PA: S IAM)  
Novikov S P 1974 Funk. Analiz. 8 54 
Previato E 1985 Duke Math. J.  52 329 
Tracy E R a n d  Chen  H H 1988 Phys. Rev. A 37 815 
Tracy E R, Chen  H H and  Lee Y C 1984 Phjs.  Rev. Lett. 53 218 
Van de r  Waerden B L 1971 Algebra (Berlin: Springer) 
Wadati  M, Konno K and Ichikawa Y H 1979 J.  Phys. Soc. Japan 46 1965 
Zakharov V E and  Shabat  A B 1971 Zh. Exp. Teor. Fiz. 61 118 

Manuscript Project, CIT) vol 3 ( N e w  York: McGraw-Hill)  


